一直以來,體節被認為是脊椎動物兩側對稱的基礎。當前一對體節形成后,下一組細胞又會在相鄰位置聚集成團,形成下一對體節。如此周而復始,體節就按從頭到尾的方向,一對接一對地形成。學界曾認為,在一些呈周期性振蕩的生物分子(通常被稱為分節時鐘)的調控下,每一對體節的形成時間、位置和形態都受到了嚴格的控制。只有保證了體節在最初形成時的對稱,才能進一步發育出我們兩側對稱的身體。
體節的“自我糾正”
最近,瑞士洛桑聯邦理工學院的3位生物工程學家和物理學家發現,體節也會長歪,只是被“捏”了回來。而把它“捏”回來的并非任何基因等生物分子,而是一種我們熟悉的機械力——表面張力。
起初,研究者只是在觀察斑馬魚胚胎體節的形成過程。他們發現,體節的形成并沒有那么規則,經常會出現兩側體節“各長各”的情況:剛形成的體節不僅長度不一致,而且形狀也不對稱。
但是在短短1小時后,體節似乎就迅速完成了“自我糾正”,均勻分布在神經管兩側。在這個過程中,胚胎里究竟發生了什么?
研究者首先試圖確認生物信號的影響。為此,他們檢測了體節中細胞數量的變化。然而,無論體節的縱向長度是增加還是減少,所有體節中的細胞數量都增加了,而且細胞數量的變化與體節縱向長度的變化之間沒有顯著的關系。
另一個重要的信號是,研究者發現,即使兩側體節的縱向長度發生了變化,它們的總體體積依然保持不變——當體節的長度改變后,它的高度和寬度也會做相應調整。
這樣一來,就像是有一只看不見的手,把兩邊的體節像揉橡皮泥一樣,捏成了對稱的形狀。那么,這只“手”是什么?研究者給出了一個猜測——表面張力。
表面張力并不罕見
我們對表面張力并不陌生,清晨凝聚在葉片上圓圓的露珠、牛奶表面聚集在一起的谷物圈,都是在表面張力的作用下形成的。
研究團隊曾進行過一系列實驗,來證明表面張力與生物體形態之間的關系。例如,研究者觀察到,實驗室培養的體細胞外形呈現出與露珠相同的圓形外觀。
但想要證明表面張力是否真的擁有決定體節形態的能力,還需要進一步實驗驗證。研究者首先破壞了一些能夠影響表面張力的蛋白質,從而削弱了體節的表面張力,他們發現神經管兩側的體節明顯無法形成對稱的形態。作為對比,他們還干擾了胚胎的分節時鐘,結果發現盡管體節的長度發生了變化,體節依然能夠維持兩側對稱的形態。
“我們得出的結論是,表面張力可以幫助糾正體節長度和對稱性的錯誤,”研究共同作者桑達爾·納加納坦總結道。盡管他們只針對斑馬魚胚胎進行了實驗和深入研究,但研究者依然認為,這一發現很可能具有普遍意義。“表面張力在所有物種的發育組織中都很常見,這種自我糾正過程也可能發生在其它脊椎動物身上?!?/span>
接下來,研究者還希望能夠繼續研究,解決更多關于身體對稱性起源的問題?!拔覀兊墓ぷ鹘忉屃吮砻鎻埩θ绾斡绊戇@些基本結構的形狀和對稱性,接下來,要解釋四肢的具體形成過程將是一個重大挑戰?!倍页藢ΨQ性之外,納加納坦和同事也在試圖理解動物的不對稱性,“比如心臟和胃為什么并不對稱,在人體發育過程中,這種不對稱性又是如何與對稱性相協調的。”