股融通配资,线下配资平台,线上股票配资炒股,10大配资公司

人工智能從“大煉模型”到“煉大模型”

信息來源:科技日報更新時間:2021-04-12

    人工智能可以分為幾個發展階段:基于數據的互聯網時代、基于算力的云計算時代,以及接下來可能將進入的基于模型的AI時代,這相當于把數據提升為超大規模預訓練模型。未來,研究人員可以直接在云模型上進行微調,很多公司甚至不用維護自己的算法研發團隊,只需要應用工程師即可。

  寫小說、和人聊天、設計網頁、編寫吉他曲譜……號稱迄今為止最“全能”的AI模型GPT-3,當然遠遠不止會這些。作為2020年人工智能領域最驚艷的模型之一,GPT-3無疑把超大規模預訓練模型的熱度推向了新高。

  3月下旬,我國首個超大規模人工智能模型“悟道1.0”發布,該模型由智源學術副院長、清華大學教授唐杰領銜,帶領來自清華大學、北京大學、中國人民大學、中國科學院等單位的100余位AI科學家組成聯合攻關團隊,取得了多項國際領先的AI技術突破,形成了超大規模智能模型訓練技術體系,訓練出包括中文、多模態、認知和蛋白質預測在內的系列超大模型。

  已啟動4個大模型開發

  據悉,“悟道1.0”先期啟動了4個大模型研發項目:以中文為核心的超大規模預訓練語言模型文源、超大規模多模態預訓練模型文瀾、超大規模蛋白質序列預測預訓練模型文溯,以及面向認知的超大規模新型預訓練模型文匯。

  唐杰介紹,文源擁有26億參數,文瀾則為10億,文溯是2.8億,文匯則達到了百億以上。雖然相對于GPT-3的1750億參數而言還有差距,但“接下來會有更大的模型”。

  目前,文源模型參數量達26億,具有識記、理解、檢索、數值計算、多語言等多種能力,并覆蓋開放域回答、語法改錯、情感分析等20種主流中文自然語言處理任務,在中文生成模型中達到了領先的效果。

  “目前這些模型既有一些交集,但也存在明顯差異。文源的重點是在中文和跨語言,未來也會加入知識;文瀾的重點主要是圖文;文匯則更多地瞄向認知。”唐杰表示,認知是人工智能技術發展的趨勢和目標,關系到機器是否能像人一樣思考這個終極問題。

  “下一代人工智能技術的發展方向一定是認知。”據唐杰介紹,在作詩任務中,目前文匯已經通過了圖靈測試。從算法的角度上來看,文匯能通過圖靈測試的關鍵在于“生成”,而不僅僅限于“匹配”,這種生成能力是多樣的。

  被問及為何會選擇這4個預訓練模型項目時,唐杰說,這是綜合考慮了國內外同行的相關工作、國內人工智能發展的現狀、團隊人員構成、北京區域優勢等作出的決定?!爱敃rGPT-3剛發布不久,悟道團隊認為首先要對標其卓越的少樣本學習能力,同時還要做出差異化,做短、中、長3個階段的布局。于是,中文版GPT-3即清源CPM(文源的前身)應運而生,這是短期布局。之后,文源要向中英文模型乃至多語言模型發展,這是中期布局。最后走向認知智能,這是長期布局。”唐杰說,與此同時,國內頂尖的企業人才、學術人才和自然科學人才所組成的團隊給了項目巨大的想象空間。

  大模型有大智慧

  自2018年谷歌發布BERT以來,預訓練模型逐漸成為自然語言處理(NLP)領域的主流。

  2020年5月,OpenAI發布了擁有1750億參數量的預訓練模型GPT-3。作為一個語言生成模型,GPT-3不僅能夠生成流暢自然的文本,還能完成問答、翻譯、創作小說等一系列NLP任務,甚至可以進行簡單的算術運算,并且其性能在很多任務上都超越相關領域的專有模型。

  以GPT-3為代表的超大規模預訓練模型,不僅以絕對的數據和算力優勢取代了一些小的算法模型,更重要的是,它展示了一條通向通用人工智能的可能路徑。在此背景下,建設國內的超大規模預訓練模型和生態勢在必行。

  在唐杰看來,為了提高機器學習算法的效率,改變傳統的行業布局,過去幾年,大家拼命做模型,導致模型越做越多。然而,一般的模型訓練效果并不如人意,花了大量財力精力卻達不到理想的訓練效果,“為了優化效果、提高精度,模型越來越復雜,數據越來越大,很多公司的能力不足以應對這種狀況,效率越來越低。”唐杰舉了個例子,小煉鋼廠往往條件簡陋,能煉鋼,但質量不好。大煉鋼廠買得起設備、花得起電費,煉出的鋼質量就好,大模型就是大煉鋼廠,它可以獲得大量數據,并把數據清洗干凈,提升算力,滿足要求。

  與此同時,“小模型可能只需要幾個老師和學生就能完成算法的設計,但是大模型的每一層都要找專人來做,這樣可以把模型的設計和訓練精細化,模型設計也從單打獨斗變成了眾人拾柴?!碧平苷f。

  小團隊將成最大受益者

  據唐杰透露,團隊目前正在跟北京冬奧會合作,開發可通過文本自動轉成手語的模型,“醫療方面我們的主要方向是癌癥早篩,如上傳乳腺癌圖像,找到乳腺癌相關預測亞類,通過影像識別宮頸癌亞類等?!?/span>

  而談到“悟道1.0”的發展,唐杰坦言,目前還存在需要持續攻關的問題。一是模型能否持續學習的問題,即能否不斷地從新樣本中學習新的知識,并能保存大部分以前已經學習到的知識。就目前來看模型還需要調整,其效果還有待加強;二是面對一些復雜問題,目前模型還無法回答;三是萬億級模型的實用性問題,即如何在保證精度的同時壓縮模型,從而能讓用戶低成本地使用。

  “這是一個全新的產業模式。原來大家數據上云、算力上云,現在模型上云?!碧平苷f。

  他認為,人工智能可以分為幾個發展階段:基于數據的互聯網時代、基于算力的云計算時代,以及接下來可能將進入的基于模型的AI時代,這相當于把數據提升為超大規模預訓練模型。未來,研究人員可以直接在云模型上進行微調,很多公司甚至不用維護自己的算法研發團隊,只需要應用工程師即可。

  唐杰表示,隨著超大規模預訓練模型系統的開放,小團隊是最大的受益者,大家不必從零開始,預訓練基線智能水平大幅提升,平臺多樣化、規?;?,大家在云上可以找到自己所需的模型,剩下的就是對行業、對場景的理解。這將給AI應用創新帶來全新的局面。

  唐杰透露,“悟道1.0”只是一個階段性的成果,今年6月將會有一個規模更大、水平更高的智慧模型發布。屆時,模型規模會有實質性的進展:模型會在更多任務上突破圖靈測試,其應用平臺的效果也會更加讓人期待。


相關推薦
MORE