統計資料表明,溫度每升高2℃,電子元器件可靠性下降10%。降低電子元器件工作時的溫度,對提高可靠性、精密度及使用壽命都具有重要意義。如何解決在高溫環境下,電子元器件使用效能大打折扣的難題,成為研究焦點。
日前,華中科技大學機械科學與工程學院高亮教授團隊設計了多種具有自由形狀、背景溫度獨立、全方向功能的熱隱身超材料,能屏蔽外部溫度場對器件內部物體的干擾,實現主動隔熱,可用于熱敏元器件的熱防護。相關研究成果近日發表于國際期刊《先進材料》。
通過對熱流的操控實現超常熱功能
近年來,科研人員通過合理設計材料的結構構型,獲得了具有超常物理性能的超材料。其中,熱學超材料作為超材料的一種,在能源高效利用、電子功率元器件熱管理等領域具有重要的應用潛力。
理論上講,通過設計熱學超材料的結構構型,可實現對熱流的操縱與控制,從而獲得熱隱身、熱集中、熱偽裝、熱旋轉等超常熱功能。
目前,實現電子元器件熱隱身功能,就是把熱隱身超材料放在元器件四周或將元器件蓋起來,以隔絕外部的大部分熱。
上述研究團隊成員華中科技大學機械科學與工程學院教授肖蜜表示:“用于熱量屏蔽的材料主要包括以下幾種:納米復合材料、多孔陶瓷材料、碳納米管、自然材料混合的熱學超材料。”
該研究團隊提出了深度學習賦能的熱學超材料拓撲優化設計方法,實現了自由形狀熱學超材料的智能設計。
該方法采用深度生成模型,根據熱學超材料的定制功能需求,可自動、實時地生成具有目標熱傳導張量的拓撲功能單胞,進而快速生成熱學超材料。
基于該思路,研究團隊設計了熱隱身超材料,并通過數值仿真和熱學實驗,驗證了其具有良好的熱隱身功能。
該研究團隊設計的熱學超材料由自然材料混合而成,但具備自然材料不具有的超常熱性能,而且超材料內部的自然材料通常是不均勻分布,且各向異性的。
肖蜜說,這類材料屏蔽熱量的原理是:通過優化設計材料的合理分布,讓熱量繞過特定區域從而實現熱量屏蔽。
在熱量屏蔽方面國內外取得一系列成果
當前,熱學超材料在熱量屏蔽方面的研究,國內外都取得了一些進展。
國際上,美國哈佛大學教授Narayana和Sato根據有效媒質理論,利用兩種不同熱導率的材料從內向外交替疊加,獲得等效的各向異性熱導率,首次制備了熱隱身超器件,掀起了熱隱身超材料的研究熱潮。
此后,德國科學院院士Wegener團隊通過在銅板上鉆孔并填充PDMS膠水,成功驗證了瞬態熱隱身超器件。新加坡南洋理工大學張百樂教授團隊通過精巧的三維金屬加工技術,首次成功制備了三維超薄熱隱身超器件。我國南方科技大學李保文教授和新加坡國立大學仇成偉教授團隊采用兩種各向同性材料實現了雙層熱隱身超器件設計與實驗驗證。浙江大學何賽靈教授團隊采用坐標變換方法在半導體硅上鉆孔,設計了熱電多場隱身超器件,實現了外部熱量和電流的屏蔽與防護。
盡管國外最先實現了熱隱身超器件的設計與制備,不過熱隱身超材料的概念最早是由我國復旦大學黃吉平教授團隊提出的。在2008年,他們提出變換熱學理論,首次預言了熱隱身超材料,該超材料可保護內部的物體免受外界熱量的干擾,且超材料本身不對外界產生任何的擾動。在此基礎上,黃吉平團隊又開展了大量研究:提出了非線性變換熱學理論、設計了宏觀熱二極管和環境溫差中零能耗保溫超器件等。
整體而言,國內外熱學超材料的研究并駕齊驅,處于并跑階段。
高亮說,熱學超材料可用于航空航天領域,減少航空航天結構的熱負荷;可用于能源裝備領域,提高設備的熱防護和熱利用效率;也可用于信息電子領域,改善熱敏電子器件的熱穩定性、提高其使用壽命等。
大面積推廣應用尚需攻克一些難題
雖然在信息電子領域,熱學超材料已初步具備了應用條件,但在大面積推廣應用和產業化方面還存在一些難點。
高亮介紹,當前熱學超材料產業化程度相對較低。雖然一些研究所和公司在該領域進行了相關研發,但其在大規模商業化生產和廣泛應用上還面臨技術成熟度、成本效益等方面的挑戰。
在材料制備技術方面,熱學超材料的制備需要高精度制備技術,從而精確控制材料的結構、組成,實現熱學超材料設計和制備的一體化和一致化。
在材料多功能性上,熱學超材料在實際應用過程中僅考慮熱學性能還不夠,在不同應用環境中,根據不同需求,還需要考慮其熱穩定性、機械強度、耐高溫、耐腐蝕、耐磨損等特性。
此外,在材料成本方面,在推廣應用中,熱學超材料的成本問題是關鍵。目前,熱學超材料制備成本相對較高,限制了其應用范圍。
高亮表示,總的來說,熱學超材料產業化應用還有較多技術問題待解決,需要更多研究機構和人員的投入與攻關。伴隨科學技術的不斷發展與成熟,相信熱學超材料產業化應用會很快實現。